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Abstract—Visual saliency can be thought of as the product of
human brain activity. Most existing models were built upon local
features or global features or both. Lately, a so-called free energy
principle unifies several brain theories within one framework, and
tells where easily surprise human viewers in a visual stimulus
through a psychological measure. We believe that this “surprise”
should be highly related to visual saliency, and thereby introduce
a novel computational Free Energy inspired Saliency detection
technique (FES). Our method computes the local entropy of
the gap between an input image signal and its predicted coun-
terpart that is reconstructed from the input one with a semi-
parametric model. Experimental results prove that our algorithm
predicts human fixation points accurately and is superior to
classical/state-of-the-art competitors. Our source code will be re-
leased at http://www.ntu.edu.sg/home/wslin/Publications.htm and
https://sites.google.com/site/guke198701/home.

Index Terms—Saliency detection, free energy, semi-parametric
model, linear autoregressive (AR) model, bi-later filtering

I. INTRODUCTION

SALIENCY detection is an active and important research
topic in both image processing and computer vision com-

munities. In many applications of graphics, design and human
computer interaction, we strongly concern about where human
beings look in a scene − where saliency spots are located.
Visual saliency can promote the study of quality assessment
[1]-[2], object recognition [3]-[4], and computer graphics [5].
So an efficient and effective computational model is eagerly
required to detect salient areas in the encountered scene.

More than hundreds of saliency detection models have been
proposed during the past 25 years [6], and this number is ex-
pected to be increasing quickly. Existing methods are divided
into two types according to distinct attentional mechanisms:
1) top-down task-dependent methods; 2) bottom-up stimulus-
driven methods. Because top-down approaches require prior
knowledge about the visual content, bottom-up approaches that
only use information from the visual signal itself have been
broadly and deeply researched.

We in this paper concentrate on bottom-up methods. Many
techniques in this class were modeled to seek for locations
with maximum local saliency and employ biologically mo-
tivated local features [7]-[10]. These features, which mainly
consist of intensity, edge, texture, color and orientation, are
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inspired by neural responses in lateral geniculate nucleus and
V1 cortex. The benchmark Itti model [7] provides a general
architecture for detecting visual saliency. This model works by
first subsampling an input image into a Gaussian pyramid, de-
composing each pyramid level into various channels for color,
intensity and orientation, and then summing and normalizing
maps in each channel across scales to yield the final saliency
map.

Some other relevant algorithms depend on global features
[11]-[15]. The techniques mainly attempt to find regions from
a visual signal that implies unique frequencies in transform
domains. This renders these algorithms quickly and precisely
detect visual “pop-outs” due to global considerations, thus to
locate possible salient objects. The classical spectral residual
(SR) model [11] was established upon the finding that more
high-frequency information than low-frequency one is stored
in the residual, and the remaining Fourier amplitude spectrum
is used to constitute a saliency map.

Recently, the adoption of only local or global features was
found to be somewhat limited. Thus, an increasing number of
nowadays studies have been devoted to incorporating both two
types of features for saliency detection [16]-[20]. Most of them
were developed based on complementary strategies, thereby
gaining substantially high performance. In [18], the authors
took into account local and global image patch rarities (LG) as
two complementary processes to design the saliency detection
model. In [19], content-aware saliency detection (CAS) model
combines four basic principles of human visual attention, i.e.
local low-level considerations, global considerations, visual
organization rules, and high-level factors.

It is human viewers deciding visual saliency, and thus the
most valid technique should highly approximate the response
of the human brain to visual stimuli. Friston has lately unified
some brain theories within the free-energy framework, which
indicates that the brain inference process always attempts to
infer the meaningful part from a visual stimulus by removing
the uncertainty [21]. It is natural that there exists a gap between
the real scene and the brain’s prediction due to the fact that the
internal generative model cannot be universal. It is the gap that
makes human viewers “surprise”, and thus attracts much more
human attention. Therefore, we hypothesize that this gap (i.e.
“surprise”) highly correlates with the visual saliency. Based on
this postulation, this paper designs a new computational Free
Energy inspired Saliency detection model (FES). Our work
computes the local entropy of the gap between an image and its
predicted version reconstructed from the input one by a semi-
parametric model, which fuses the parametric autoregressive
(AR) operator that can simulate a broad range of natural scenes
and the non-parametric bi-lateral filtering that works stably at
image edges.
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The rest of this paper is organized as follows. Section II
introduces the proposed FES model for saliency detection. In
Section III, we compare the performance of our method with
classical/state-of-the-art techniques on three popular datasets
(Toronto [9], FIFA [8] and MIT [16]). Finally, the whole paper
is concluded in Section IV.

II. SALIENCY DETECTION MODEL

The recent free energy principle explains and unifies several
significant brain theories in biological and physical sciences
[21], which makes a fundamental premise that the cognitive
process is determined by an internal generative model in the
human brain. According to this model, the brain can predict the
encountered scene in a constructive way, which is essentially
a probabilistic model that can be separated into a likelihood
term and a prior term. Visual perception is then to invert the
likelihood term, in order to infer the posterior possibilities of
the encountered scene. Typically, there always exists a gap
between the given scene and the brain’s prediction, because
this generative model cannot work effectively everywhere. It
is reasonable that the gap between the external input and
its generative-model-explainable part is closely related to the
“surprise” perceived by the brain, and thereby can be used for
visual saliency detection.

It is clear that free energy measures the discrepancy (i.e.
the error map) between the input visual signal and its output
best explanation which is inferred by the internal generative
model. In the error map, larger-value regions are what cannot
be well explained by the generative model (i.e. “surprise”),
whereas smaller-value pixels are what can be easily described.
This error map is obtained through minimizing free energy.
Referring to the analysis in [22], the process of free-energy
minimization is highly connected to the predictive coding, and
it can be finally approximated as the entropy of the residuals
between the input image and its predicted one.

Though the AR model is simple and can simulate a wide
range of natural scenes [23]-[25], it is sometimes unstable at
image edges. Hence, the internal generative model was chosen
to be a newly defined semi-parametric model, which combines
the parametric AR operator and the non-parametric bi-lateral
filtering with a good edge-preserving ability. To specify, the
AR operator is expressed by

yi = ∆h(yi)aaa+ ei (1)

where yi is the value of a pixel at location xi, ∆h(yi) defines
h member neighborhood vector of yi, aaa = (a1, a2, ..., ah)T is
a vector of AR parameters, and ei is a difference term between

truth values and predictions. To determine aaa, the linear system
can be written in matrix form as

âaa = arg min
aaa
‖y− Yaaa‖2 (2)

with y = (y1, y2, ..., yh)T and Y(i, :) = ∆h(yi). We can easily
solve this linear system using the least square method as aaa =
(YT Y)−1YT y.

The bi-lateral filtering is a classical non-linear filtering and
is easy to construct and compute [26]. We define the bi-lateral
filtering to be

yi = ∆h(yi)bbb+ e′i (3)

where bbb = (b1, b2, ..., bh)T is a vector of bi-lateral filtering
coefficients, and e′i is an error term. The vector bbb is controlled
by two factors (i. the spatial Euclidean distance between xi
and xj ; ii. the photometric distance between yi and yj) and it
is defined by

bj = B(xi, xj ; yi, yj)

= exp
{−‖xi − xj‖2

2σ2
x

+
−(yi − yj)2

2σ2
y

}
(4)

where σx and σy are fixed numbers for adjusting the relative
importance of the spatial and photometric distances.

We finally estimate the error map s̃ between the input visual
signal and the output best explanation by integrating the AR
model and bi-lateral filtering. The pixel value ỹi at the location
xi in s̃ is computed by

ỹi =
∆h(yi)âaa+ t∆h(yi)bbb

1 + t
(5)

where t is a positive constant to alter the relative importance of
above two components. Then visual saliency, which is thought
of as “pop-outs” in each of small patches, can be detected by
measuring the local entropy of the error map.

Here we summarize details of the proposed saliency model
as follows: First, an input color image is resized to a coarse
63×47 pixel representation similar to the scheme used in [13];
Second, the error map in each color channel is estimated using
the semi-parametric model before computing the local entropy;
Third, the saliency map is formed to be the weighted sum
across three local entropy maps in different color channels,
which has been filtered by Gaussian kernel and normalized as
follows:

S =
∑

i={L,A,B}

wiN(G(s̃i)) (6)

where s̃L, s̃A and s̃B stand for the local entropy maps in L, A
and B channels. wL, wA and wB are fixed positive weights for

Fig. 1: An illustration of the proposed FES model. The input color image is decomposed into three LAB channels. A saliency map is
computed for each channel independently, and the final saliency map is the weighted sum across three.
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(d) (e) (f)

Fig. 2: Saliency map construction: For a visual stimulus in (a), (b)-
(d) show the saliency maps computed in L, A and B channels. (e)
shows the final combined saliency map. (f) shows the fixation map.

adjusting the relative importance across different colors. G(·)
denotes a Gaussian smoothing function and N(·) is a map
normalization operator. A brief flowchart of our algorithm is
given in Fig. 1.

III. EXPERIMENTS AND ANALYSIS

An example for illustrating the proposed model is shown
in Fig. 2. For the sample image in Fig. 2(a), Figs. 2(b)-(d)
present the saliency maps that are computed in L, A and B
color channels. Figs. 2(e)-(f) show the final combined saliency
map and the associated fixation map. As exemplified, our FES
algorithm accurately predicts the human fixations.

We measure the proposed FES saliency detection model on
three popular databases: Toronto dataset [9], FIFA dataset [8],
and MIT dataset [16]. A total of nine methods, including three
classical Itti [7], AIM [9], Judd [16], and six state-of-the-art
QDCT [12], SigSal [13], HFT [14], LG [18], CAS [19], AWS
[10], are used for performance comparison.

First, we qualitatively compare the proposed method with
nine algorithms. We present several representative images in
the Toronto dataset and associated saliency maps in Fig. 3.
For each sample image in the first row, the images in the
second and third rows show the corresponding fixation maps
and the FES-based saliency maps. The images in the fourth
to twelfth rows exhibit the saliency maps computed by the
testing techniques. Through simulating the brain process in
saliency detection, our approach is found to predict human
fixation points precisely as compared to classical/state-of-the-
art competitors.

Second, we quantitatively compare the proposed approach
with existing relevant models. We compute the shuffled ROC
Area Under the Curve (sAUC) score for each image to evaluate
the consistency between a particular saliency map and a group
of fixations. The authors of [27] have pointed out that the
strong center-bias exists in human fixations and it may affect
the performance indices of saliency detection techniques. To
reduce such bias, we follow the procedure proposed in [27].
The positive sample set in an image includes the fixation
points of all subjects on that one, whereas the negative sample

Fig. 3: Comparison of saliency detection models: The first to second
rows show the representative images in the Toronto dataset [9] and
the corresponding fixation maps. The images in the third to twelfth
rows show the saliency maps computed by the proposed FES model,
Itti [7], AIM [9], Judd [16], QDCT [12], SigSal [13], HFT [14], LG
[18], CAS [19], and AWS [10].

set includes the union of all fixation points across the entire
images from the same dataset−except for the positive samples.
Each saliency map generated by the algorithm is thresholded
and then used as a binary classifier to separate the positive
samples from negative samples. At a particular threshold level
Thr, the true positive rate is the proportion of the positive
samples that fall into the positive (white) region of the binary
saliency map. The false positive rate is computed similarly by
using the negative sample set. Sweeping over thresholds yields
an ROC curve, of which the area beneath provides a good
index of judging how the saliency map can accurately predict
where fixations occurred on an image. Note that the chance
level is 0.5 while the perfect prediction is 1.0. An example is
provided in Fig. 4, in which the blue curve shows the ROC
curve computed using our FES technique on the first sample
image in Fig. 3, while the red diagonal dash line indicates the
chance level. The area under the blue curve is 0.7775, much
higher than the chance level of 0.5.
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Fig. 4: The blue curve shows the ROC curve of our FES algorithm
on the first sample image in Fig. 3, with the red reference dash line
indicating the chance level of 0.5. The area under the blue curve is
up to 0.7775.

Furthermore, we report the sAUC scores of the nine testing
saliency detection models and the proposed FES technique on
three eye tracking datasets as well as their direct averages in
Table I. In the first classical Toronto dataset, our approach
achieves the top performance across all testing algorithms. In
the second FIFA dataset dedicated to the face detection, the
proposed FES model is noticeably superior to other methods,
which indicates our model is good at the face detection and
it may help to facilitate the scientific research and practical
application of face detection and recognition. In the third MIT
dataset, the proposed approach still obtains the second place,
a little less than the recent AWS algorithm, which is possibly
due to the fact that there are quite a few images with various
resolutions or corrupted by more or less motion blur. We also
compute the average performance of each testing model and
prove the effectiveness of our FES method.

Finally, it deserves to emphasize two points. Firstly, our
model is built upon a reasonable hypothesis that the “surprise”
in an encountered scene largely draws the visual attention,
and our model works by using a semi-parametric method to
simulate the free energy based brain theory and thus to model
the aforementioned process of perceiving “surprise”. This is
why the proposed FES model works so effectively. Secondly,
the used semi-parametric model combines the traditional AR
operator with bi-lateral filtering. Instead, recently developed
methods, e.g. guided image filter (GIF) [28] and its advanced
weighted GIF [29] of the better edge-preserving ability, might
lead to higher performance for visual saliency detection.

IV. CONCLUSION

In this paper we have put forward a novel computational
Free Energy inspired Saliency detection technique (FES). This
model is motivated by a recently revealed human brain theory,
and it works by searching for the “surprise” between an input
visual stimulus and its predicted version that is reconstructed
from the input signal by using a semi-parametric model. The
concept of surprise provides a natural ground and connection

TABLE I: Shuffled-AUC results of the proposed FES model and
nine testing classical/state-of-the-art saliency detection techniques.

Models Toronto [9] FIFA [8] MIT [16] Average
Itti [7] 0.6570 0.6724 0.6424 0.6573

AIM [9] 0.6816 0.7233 0.6674 0.6908
Judd [16] 0.6836 0.7089 0.6587 0.6837

QDCT [12] 0.7162 0.7278 0.6732 0.7057
SigSal [13] 0.7047 0.7278 0.6681 0.7002
HFT [14] 0.6896 0.6991 0.6514 0.6800
LG [18] 0.6883 0.6736 0.6717 0.6779

CAS [19] 0.6919 0.7114 0.6684 0.6906
AWS [10] 0.7116 0.7084 0.6916 0.7039
FES (Pro.) 0.7195 0.7539 0.6871 0.7202

to saliency modeling, since visual saliency is about difference,
contrast, pop-outs and unusual/unexpected/unpredictable hap-
penings. By both qualitative and quantitative comparisons, our
FES algorithm is shown to predict human fixation points ac-
curately and outperform nine classical/state-of-the-art saliency
detection models on sAUC scores using three benchmark eye
tracking datasets. Along this line of research, several issues
will be further explored in saliency detection, such as adaptive
weighting for various color channels and adaptive scaling for
different visual scenes.
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